A remark on the Gaussian lower bound for the Neumann heat kernel of the Laplace-Beltrami operator
نویسندگان
چکیده
We adapt in the present note the perturbation method introduced in [3] to get a lower Gaussian bound for the Neumann heat kernel of the Laplace-Beltrami operator on an open subset of a compact Riemannian manifold.
منابع مشابه
Discrete heat kernel determines discrete Riemannian metric
The Laplace-Beltrami operator of a smooth Riemannian manifold is determined by the Riemannian metric. Conversely, the heat kernel constructed from the eigenvalues and eigenfunctions of the Laplace-Beltrami operator determines the Riemannian metric. This work proves the analogy on Euclidean polyhedral surfaces (triangle meshes), that the discrete heat kernel and the discrete Riemannian metric (u...
متن کاملGeneralized Heat Kernel Signatures
In this work we propose a generalization of the Heat Kernel Signature (HKS). The HKS is a point signature derived from the heat kernel of the Laplace-Beltrami operator of a surface. In the theory of exterior calculus on a Riemannian manifold, the Laplace-Beltrami operator of a surface is a special case of the Hodge Laplacian which acts on r-forms, i. e. the Hodge Laplacian on 0-forms (functions...
متن کاملUpper Bounds for the Spectral Function on Homogeneous Spaces via Volume Growth
We use the so-called spectral embedding to give upper bounds on the spectral function of the Laplace-Beltrami operator on homogeneous spaces in terms of the volume growth of balls. In the case of compact manifolds, our bounds extend the 1980 lower bound of Peter Li [Li80] for the smallest positive eigenvalue to all eigenvalues. We also improve Li’s bound itself. Our bounds translate to explicit...
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کاملHeat Kernel Smoothing of Anatomical Manifolds via Laplace-Beltrami Eigenfunctions Submitted to IEEE Transactions on Medical Imaging
We present a novel surface smoothing framework using the Laplace-Beltrami eigenfunctions. The Green’s function of an isotropic diffusion equation on a manifold is analytically represented using the eigenfunctions of the Laplace-Beltraimi operator. The Green’s function is then used in explicitly constructing heat kernel smoothing as a series expansion of the eigenfunctions. Unlike many previous ...
متن کامل